

PROJECT: HD500-T HURRICANE IMPACT


MIAMI DADE, FL

CLIENT: ATLAS INC.

- SUBJECT: STRUCTURAL CALCULATIONS-ENVIRONMENTAL LOAD RESISTANCE "NON THERMALLY BROKEN"
- **DATE: APRIL** 7TH, 2020

PREVIOUS MARCH 20^{TH} , 2020

SUBMITTALS:

DALLAS	
FORT WORTH	Table of Contents ATLAS INC.
LOS ANGELES	
SAN FRANCISCO	Design Criteria3
	Mullion Analysis5
LAS VEGAS	Horizontal Analysis13
CHICAGO	Anchor Analysis
	Head Anchor Analysis
BALTIMORE	Sill Anchor Analysis
	Appendix
NEW ENGLAND	

нолд колд

Note: This calculation package is performed to confirm structural adequacy of framing and anchorage of Atlas HD500-T storefront system. The system has been determined to handle wind pressures shown on the following design criteria page when using non-thermally broken vertical framing members.

Thermal Performance and impact resistance for this glazed framing system are not addressed and are beyond the scope of this analysis.

DALLAS		
FORT WORTH		
LOS ANGELES		
SAN FRANCISCO		
LAS VEGAS		
CHICAGO		
BALTIMORE		
NEW ENGLAND		
HONG KONG		

DESIGN CRITERIA

CURTAIN WALL DESIGN CRITERIA HD500-T HURRICANE IMPACT ATLAS INC.

WIND LOADS (Ref. following ASCE calculations)

- System Wind Pressure Capacity: (ASD)	60 PSF
DEAD LOAD	
- Glass: (Per ¹ / ₄ '' Thickness)	3.25 PSF
- Aluminum Framing & Misc. Components:	2 PSF
FRAMING DEFLECTION LIMITS - Framing Members Supporting Glass	
• Normal To Surface:	
 Individual Glass Edge: 	Lesser of L/175 or $\frac{3}{4}$ "
	Lesser of L/175 or ³ /4'' Same as above with no damage to sealant

- General Installation Tolerance::

 $\pm 1/4$ "

GENERAL NOTES

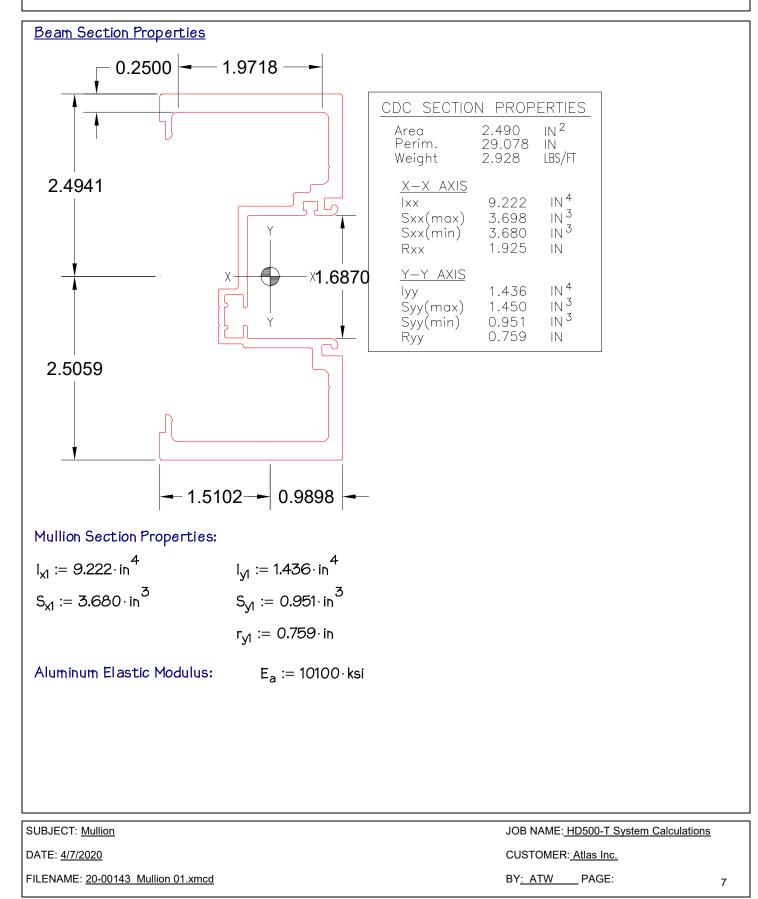
- Glass analysis is not included in these calculations; glass manufacturer must verify the structural integrity of the glass.
- Unless otherwise noted, all stud framing used in attachment of curtain wall to be 16 gauge minimum for fastener pullout. Stud manufacturer to confirm adequacy of stud system to withstand imposed loading from curtain wall.

DALLAS	
FORT WORTH	
LOS ANGELES	
SAN FRANCISCO	
LAS VEGAS	
CHICAGO	
BALTIMORE	MULLION ANALYSIS
NEW ENGLAND	
HONG KONG	

CDC

ENGINEERING

Mullion 01	5		
Load Origination		IJ	
Trib Width:	T₩4 ·=	4·ft+9·in	
	TW ₂ :=	$4 \cdot ft + 9 \cdot in$	
Wind Pressure: (Corner Zone 10 ft^2)	W _n := 6	60∙psf	
Span Length:			
		0·ft+0·in	
$q_{w} := 0.5 \cdot (TW_{1} + TW_{2}) \cdot W_{n}$	q _w = 2	$23.75 \cdot 16f \cdot in^{-1}$	
SUBJECT: Mullion	JOB NAME: HD	500-T System Calculatior	ns
DATE: <u>4/7/2020</u>	CUSTOMER: At		
Ell ENAME: 20-00143 Mullion 01 xmcd			


FILENAME: 20-00143 Mullion 01.xmcd

BY<u>: ATW</u> PAGE:

CURTAINWALL DESIGN CONSULTING

_ ENGINEERING

Check Deflection:		
Deflection:	$\Delta_{\mathbf{y}} \coloneqq 5 \cdot \mathbf{q}_{\mathbf{w}} \cdot \mathbf{L}_{\mathbf{s}}^{4} \cdot \left(384 \cdot \mathbf{E}_{\mathbf{a}} \cdot \mathbf{I}_{\mathbf{x1}}\right)^{-1}$	$\Delta_{ m y}=~0.688\cdot$ in
Allowable Deflection:	$\Delta_{ay} \coloneqq L_s \cdot 175^{-1}$	$\Delta_{ay} = 0.686 \cdot in$
Deflection := if $(\Delta_y \leq \Delta_{ay}, "Content of a gradient o$	DK" , "NOT OK") = "NOT OK"	
Note: Deflection exceeds allow <u>Check Bending Stress in Mullic</u>	wable by less then 1/32 in and is cons on Section:	sidered "OK" by inspection.
Max. Bending Moment:	$M_{x} := q_{w} \cdot L_{s}^{2} \cdot \delta^{-1}$	$M_x = 42750 \cdot lbf \cdot in$
Stress in Male Mullion: <u>Check of Bending on Male Mull</u>	$f_{bx} := M_x \cdot S_{x1}^{-1} \cdot \left(I_{x1} \cdot I_{x1}^{-1}\right)$	$f_{bx} = 11.6 \cdot ksi$
Unbraced Length:		$L_b := O \cdot in$
Flat Element Width:		b := 1.972 · in
Flat Element Thickness:	4	t := 0.25 · in
Slenderness:	$S_{1} := L_{b} \cdot r_{y1}^{-1}$ $S_{2} := b \cdot t^{-1}$	$S_1 = 0$
		S ₂ = 7.9
Allowable Bending Stresses for $E_{1} = 1(167 - 0.073 \text{ s})$	or 6063-T6 Aluminum: if $S < 94$	ADM 2010 F.2.1
$F_{\rm b1} = (10.7 - 0.075 \cdot 31)$ ks	$ \exists_1 \geq \forall d^2$	
15.2 ksi if $S_1 \le 0.0$)	F _{b1} = 15.2 ⋅ ksi
$F_{b1} := \begin{cases} (16.7 - 0.073 \cdot S_1) \text{ ksi} \\ 15.2 \cdot \text{ ksi} & \text{if } S_1 \leq 0.0 \\ \\ \left(\frac{86996}{S_1^2}\right) \text{ ksi} & \text{otherm} \end{cases}$		ADM 2010 B.5.4.1
$F_{b2} := (19 - 0.530 \cdot S_2)$ ksi	if $S_2 \le 12.6$	
15.2 ksi if $S_2 \le 7.3$	3	
$\left(\frac{155}{S_2}\right)$ ksi otherwise		$F_{b2} = 14.8 \cdot ksi$
$F_{bx} := \min(F_{b1}, F_{b2})$		$F_{bx} = 14.8 \cdot ksi$
$I := f_{bx} \cdot F_{bx}^{-1}$		I = 0.784
Interaction := if(I < 1.0, "OK"	, "NOT OK") = "OK"	
SUBJECT: Mullion		JOB NAME: HD500-T System Calculations
DATE: <u>4/7/2020</u>		CUSTOMER: <u>Atlas Inc.</u>
FILENAME: 20-00143 Mullion 01.xmcd		BY <u>: ATW</u> PAGE: 8

_____ ENGINEERING

Jamb Mullion 01	4		
Load Origination	T 11/ .		
Trib Width:		4∙ft + 9∙in	
	TW ₂ :=	: 0·ft + 0·in	
Wind Pressure: (Corner Zone 10 ft^2)	$W_n := 0$	60∙psf	
Span Length:		0·ft + 0·in	
$q_{w} := 0.5 \cdot (TW_{1} + TW_{2}) \cdot W_{n}$	q _w = 1	$1.88 \cdot 1bf \cdot in^{-1}$	
SUBJECT: Mullion	JOB NAME: HD	500-T System Calcula	ations
DATE: <u>4/14/2020</u>	CUSTOMER: At	las Inc.	
FILENAME: 20-00143 Jamb Mullion 01.xmcd	BY <u>: ATW</u>	PAGE:	9

CDC

_ ENGINEERING

IN 2

LBS/FT

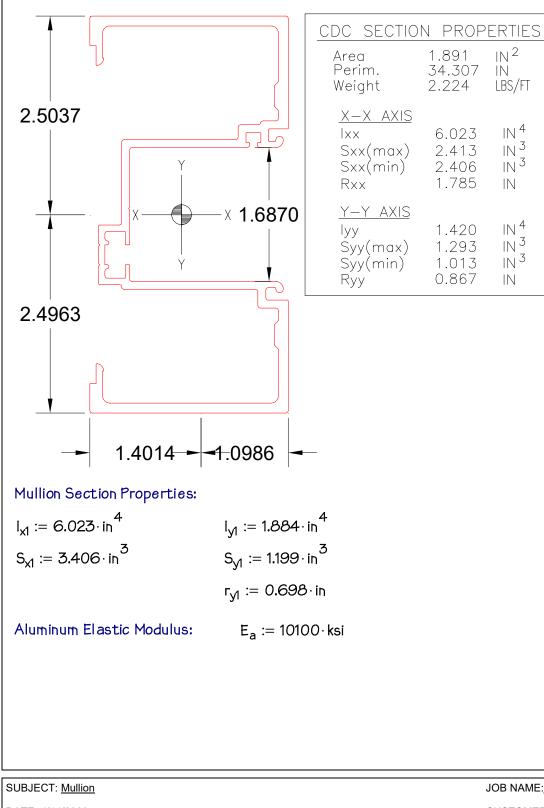
 IN^4

. IN ³

IN ³

 IN^4

IN ³


IN ³

IN

IN

IN

Beam Section Properties

DATE: 4/14/2020

FILENAME: 20-00143 Jamb Mullion 01.xmcd

JOB NAME: HD500-T System Calculations

CUSTOMER: Atlas Inc.

BY<u>: ATW</u> PAGE:

CDC CURTAINWALL DESIGN CONSULTING" . _ ENGINEERING Check Deflection: $\Delta_{y} := 5 \cdot q_{w} \cdot L_{s}^{4} \cdot \left(384 \cdot E_{a} \cdot I_{x1}\right)^{-1}$ Deflection: $\Delta_y = 0.527 \cdot in$ $\Delta_{av} := L_s \cdot 175^{-1}$ $\Delta_{av} = 0.686 \cdot in$ Allowable Deflection: $\mathsf{Deflection} \mathrel{\mathop:}= \mathsf{if} \Bigl(\Delta_{\mathsf{y}} \leq \Delta_{\mathsf{ay}}, "\mathsf{OK"} \;, "\mathsf{NOT} \; \mathsf{OK"} \Bigr) = "\mathsf{OK"}$ Check Bending Stress in Mullion Section: $M_x := q_w \cdot L_s^2 \cdot \delta^{-1}$ Max. Bending Moment: $M_{v} = 21375 \cdot lbf \cdot in$ $f_{bx} := M_x \cdot S_{x1}^{-1} \cdot \left(I_{x1} \cdot I_{x1}^{-1}\right)$ f_{bx} = 6.3 ⋅ ksi Stress in Male Mullion: Check of Bending on Male Mullion Unbraced Length: $L_{\rm b} := 0 \cdot in$ Flat Element Width: b := 2.5 · in Flat Element Thickness: t := 0.125 · in $S_1 := L_b \cdot r_{y1}^{-2}$ $S_1 = 0$ Slenderness: $S_2 := b \cdot t^{-1}$ $S_2 = 20.0$ Allowable Bending Stresses for 6063-T6 Aluminum: $F_{b1} := \left[\begin{pmatrix} 16.7 - 0.073 \cdot S_1 \end{pmatrix} ksi & \text{if } S_1 \le 94 \end{cases} \right]$ ADM 2010 F.2.1 $15.2 \cdot \text{ksi} \quad \text{if} \quad S_1 \leq 0.0$ $\left(\frac{86996}{S_1^2}\right) \text{ksi} \quad \text{otherwise}$ $F_{h1} = 15.2 \cdot ksi$ ADM 2010 B.5.4.1 $F_{b2} := \begin{bmatrix} (19 - 0.17 \cdot S_2) \text{ ksi} & \text{if } S_2 \leq 39 \\ 15.2 \cdot \text{ ksi} & \text{if } S_2 \leq 22.8 \\ \hline \left(\frac{484}{S_2}\right) \text{ ksi} & \text{otherwise} \end{bmatrix}$ $F_{h2} = 15.2 \cdot ksi$ $F_{bx} := \min(F_{b1}, F_{b2})$ $F_{bx} = 15.2 \cdot ksi$ $I := f_{hv} \cdot F_{hv}^{-1}$ I = 0.413Interaction := if(1 < 1.0, "OK", "NOT OK") = "OK"SUBJECT: Mullion JOB NAME: HD500-T System Calculations DATE: 4/14/2020 CUSTOMER: Atlas Inc.

FILENAME: 20-00143 Jamb Mullion 01.xmcd

BY: ATW PAGE:

CDC

ENGINEERING

<u>Check of Bending Stress on Leg of Horizontal (6063-T6)</u>			
Effective Depth:		d := 12in	
Thickness:		t ₁ := 0.103 · in	
Bending Eccentricity:	e ₁ := 1.69in	e ₁ = 1.69 ⋅ in	
Section modulus:	$S_{x1} := (t_1^2 \cdot d) \cdot 6^{-1}$	$S_{x1} = 0.021 \cdot in^3$	
Bending Moment:	$M_{b1} := \left(q_{w} \cdot e_{1} \cdot d \right)$	$M_{b1} = 241 \cdot lbf \cdot in$	
Bending Stress:	$f_{b1} := M_{b1} \cdot (S_{x1})^{-1}$	f _{b1} = 11.4 ⋅ ksi	
Ŭ		.01	
Allowable Bending Stress:		F _{ba} := 19.7ksi	
Interaction:	$I := f_{b1} \cdot F_{ba}^{}-}1}$	l = 0.58	
Interaction := $if(I \le 1.00, "OK", "$	NOT OK") = "OK"		

SUBJECT: Mullion

DATE: <u>4/14/2020</u>

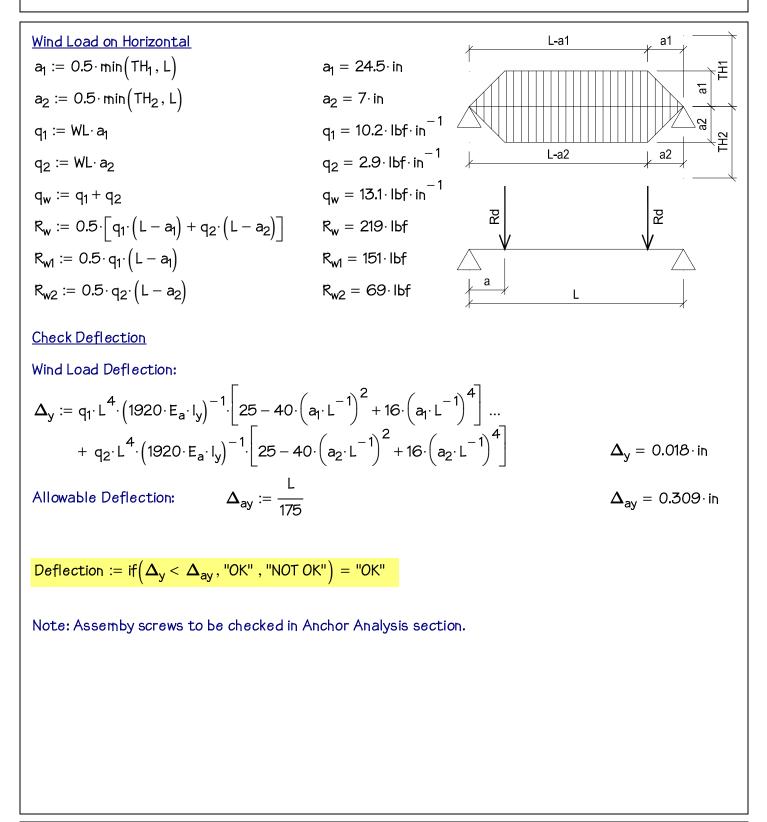
FILENAME: 20-00143 Jamb Mullion 01.xmcd

JOB NAME: HD500-T System Calculations

CUSTOMER: Atlas Inc.

BY<u>: ATW</u> PAGE:

DALLAS	
FORT WORTH	
LOS ANGELES	
SAN FRANCISCO	
LAS VEGAS	
CHICAGO	
BALTIMORE	HORIZONTAL ANALYSIS
NEW ENGLAND	


нолд колд

CDC

ENGINEERING

Head H	orizontal	1
Load Origination Wind Pressure:		WL := 60∙ psf
Weight of Glass:		D _g := 6.5 · psf
Trib Heights:		TH ₁ := 49in
		$TH_2 := 14 \cdot in$
Horizontal Length:		L := 54in
Aluminum Elastic Modulus:		E _a := 10100 ⋅ ksi
1.4014 1.4014 1.5600 1.0986 2.4963 Beam Section Properties $l_x := 1.42 \cdot in^4$		CDC SECTION PROPERTIES Area 1.891 IN ² Perim. 34.307 IN Weight 2.224 LBS/FT X-X AXIS 1.420 IN ⁴ Ixx 1.420 IN ⁴ Sxx(max) 1.293 IN ³ Sxx(min) 1.013 IN ³ Rxx 0.867 IN Y-Y AXIS 1.413 IN ³ Iyy 6.023 IN ⁴ Syy(max) 2.413 IN ³ Syy(min) 2.406 IN ³ Ryy 1.785 IN
$S_x := 1.013 \cdot in^3$	$l_y := 6.0230 \cdot in^4$ $S_y := 2.406 \cdot in^3$	
r _x := 0.867 · in	$A := 1.891 \cdot in^2$	
SUBJECT: <u>Horizontal 01</u> DATE: <u>4/7/2020</u>		JOB NAME <u>: HD500-T System Calcula</u> CUSTOMER: <u>Atlas Inc.</u>
FILENAME: 20-00143 Horizontal 02.xmcd		BY <u>: ATW</u> PAGE:

ENGINEERING

SUBJECT: Horizontal 01

DATE: <u>4/7/2020</u>

FILENAME: 20-00143 Horizontal 02.xmcd

JOB NAME: HD500-T System Calculations

CUSTOMER: Atlas Inc.

BY<u>: ATW</u> PAGE:

<u>Check Bending Stress</u> Bending Moment on Assembly:			
$M_{y} := q_{1} \cdot 24^{-1} \cdot \left(3 \cdot L^{2} - 4 \cdot a_{1}^{2}\right) + q_{2} \cdot 24^{-1}$	$1 \cdot \left(3 \cdot L^2 - 4 \cdot a_2^2\right)$	M _y = 3739 · lbf · in	
Max Stress on Horizontal: f _{by} :	$= \left(M_{y} \cdot S_{y}^{-1} \right)$	f _{by} = 1.55 ⋅ ksi	
Unbraced Length:		L _b := L	
Flat Element Width:		b := 2.11 · in	
Flat Element Thickness:		t := 0.08 · in	
Slenderness:	$S_1 := L_b \cdot r_x^{-1}$	S ₁ = 62.3	
	$S_2 := b \cdot t^{-1}$	S ₂ = 26.4	
Allowable Bending Stresses for 6063-Te $F_{b1} := \left((16.7 - 0.073 \cdot S_1) \cdot ksi \text{ if } S_1 \le \right)$		ADM 2010 F.2.1	
$F_{b1} := \begin{cases} (16.7 - 0.073 \cdot S_1) \cdot \text{ksi} & \text{if } S_1 \leq \\ 86996 \cdot S_1^{-2} \cdot \text{ksi} & \text{otherwise} \end{cases}$		F _{b1} = 12.2 ⋅ ksi	
$F_{b2} := \left((19.0 - 0.530 \cdot S_2) \cdot \text{ksi} \text{ if } S_2 \right)$	≤ 12.6	ADM 2010 B.5.4.1	
15.2 ksi if S ₂ < 7.3			
$F_{b2} := \begin{cases} (19.0 - 0.530 \cdot S_2) \cdot \text{ksi} & \text{if } S_2 \leq \\ 15.2 \cdot \text{ksi} & \text{if } S_2 < 7.3 \\ 155 \cdot S_2^{-1} \cdot \text{ksi} & \text{otherwise} \end{cases}$		F _{b2} = 5.9⋅ksi	
$F_{by} := \min(F_{b1}, F_{b2})$		F _{by} = 5.9⋅ksi	
$I := \frac{f_{by}}{F_{by}}$		I = 0.26	
Interaction := if(I < 1.0, "OK", "NOT OK") = "OK"		
SUBJECT: Horizontal 01		JOB NAME: HD500-T System Calculations	

DATE: <u>4/7/2020</u>

FILENAME: 20-00143 Horizontal 02.xmcd

CUSTOMER: Atlas Inc.

BY: ATW PAGE:

CDC

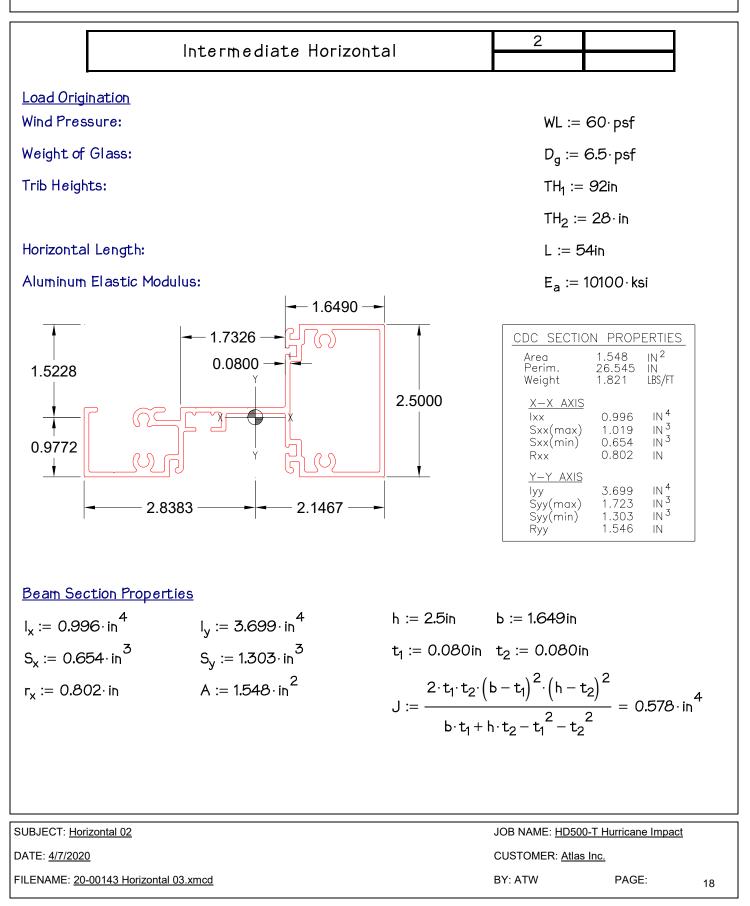
ENGINEERING

Check of Bending Stress on Leg of Horizontal (6063-T6)			
Effective Depth:		d := 12in	
Thickness:		t ₁ := 0.103 · in	
Bending Eccentricity:	e ₁ := 1.56in	e ₁ = 1.56 · in	
Section modulus:	$S_{x1} := (t_1^2 \cdot d) \cdot 6^{-1}$	$S_{x1} = 0.021 \cdot in^3$	
Bending Moment:	$M_{b1} := \left(q_{w} \cdot e_{1} \cdot d\right)$	$M_{b1} = 246 \cdot lbf \cdot in$	
Bending Stress:	$f_{b1} := M_{b1} \cdot (S_{x1})^{-1}$	f _{b1} = 11.6 ⋅ ksi	
Allowable Bending Stress:		F _{ba} := 19.7ksi	
Interaction:	$I := f_{b1} \cdot F_{ba}^{-1}$	I = 0.59	
Interaction := if (I \leq 1.00, "OK", "NOT OK") = "OK"			

SUBJECT: Horizontal 01

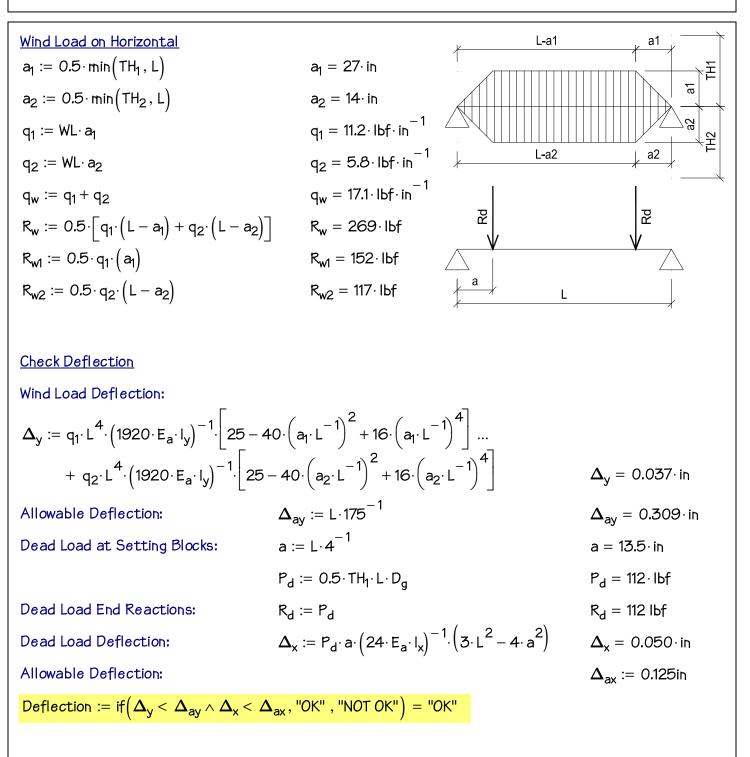
DATE: <u>4/7/2020</u>

FILENAME: 20-00143 Horizontal 02.xmcd


JOB NAME: HD500-T System Calculations

CUSTOMER: Atlas Inc.

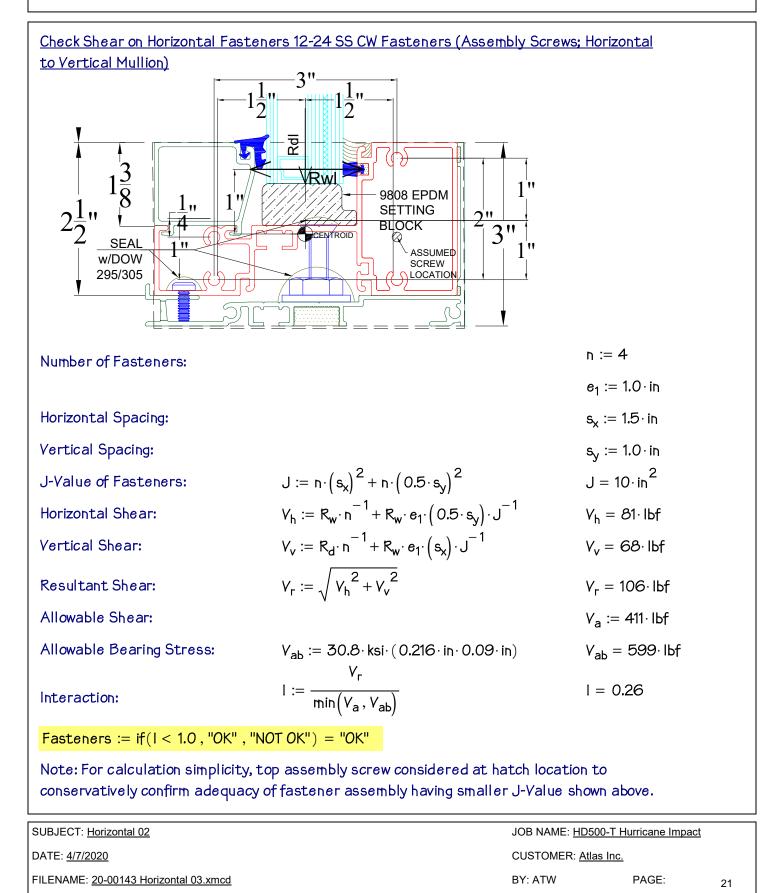
BY<u>: ATW</u> PAGE:


CDC

ENGINEERING

CDC

ENGINEERING

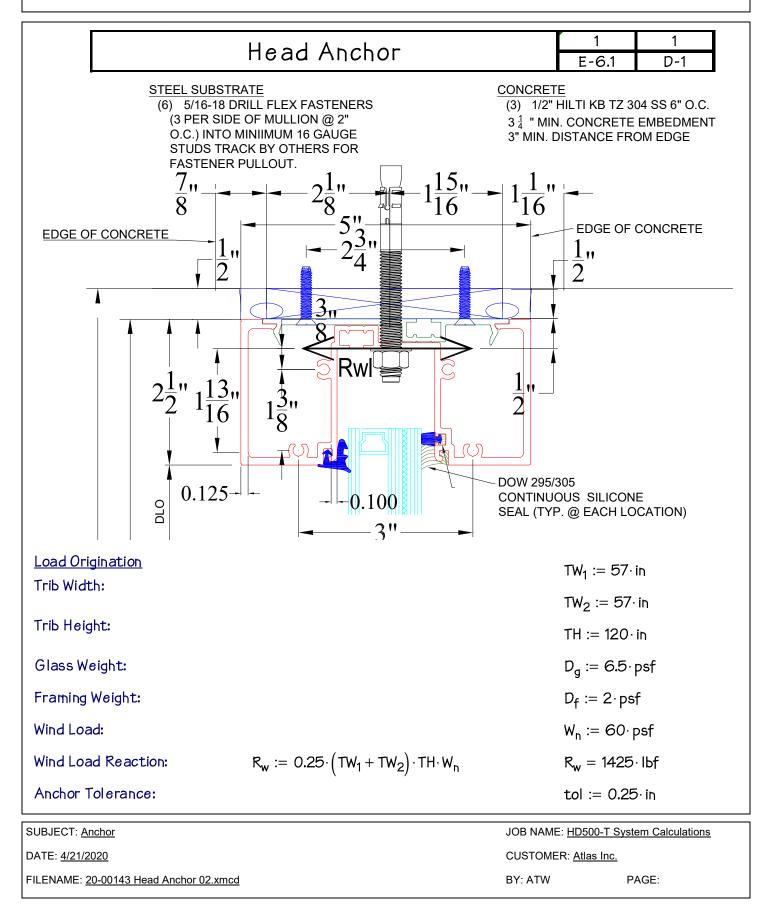


SUBJECT: Horizontal 02	JOB NAME: <u>HD500-T Hurricane Ir</u>	<u>mpact</u>
DATE: <u>4/7/2020</u>	CUSTOMER: Atlas Inc.	
FILENAME: 20-00143 Horizontal 03.xmcd	BY: ATW PAGE:	19

ENGINEERING

Check Bending Stress Bending Moment on Assembly: $M_{y} := q_{1} \cdot 24^{-1} \cdot \left(3 \cdot L^{2} - 4 \cdot a_{1}^{2} \right) + q_{2} \cdot 24^{-1} \cdot \left(3 \cdot L^{2} - 4 \cdot a_{2}^{2} \right)$ $M_v = 4669 \cdot lbf \cdot in$ $M_x = 1514 \cdot lbf \cdot in$ Max Stress on Horizontal: $M_x := R_d \cdot a$ $f_{bx} := M_x \cdot S_x^{-1}$ $f_{bx} = 2.3 \cdot ksi$ $f_{by} := \left(M_y \cdot S_y^{-1}\right)$ f_{by} = 3.58 ⋅ ksi Unbraced Length: $L_{h} := L$ $S_1 := \frac{2 \cdot L_b \cdot S_x}{1 \cdot \left(I_y \cdot J\right)^{0.5}}$ S₁ = 48.3 Slenderness: Allowable Bending Stresses for 6063-T6 Aluminum $\begin{array}{lll} F_{b1} := & \left(16.7 - 0.140 \cdot S_{1}^{0.5} \right) \cdot ksi & \mbox{if} \quad S_{1} \leq 2400 \\ & \\ & \\ \hline & \\ \hline & \\ \hline & \\ S_{1} \end{array} \cdot ksi & \mbox{otherwise} \end{array} \right. \label{eq:Fb1}$ ADM 2010 F.3.1 $F_{b1} = 15.7 \cdot ksi$ F_{b2} := 15.2 · ksi ADM 2010 B.5.4.1 $F_{ba} := \min(F_{b1}, F_{b2})$ $F_{ba} = 15.2 \cdot ksi$ $\mathsf{Int} := \left(\frac{\mathsf{f}_{\mathsf{bx}}}{\mathsf{F}_{\mathsf{ba}}}\right) + \left(\frac{\mathsf{f}_{\mathsf{by}}}{\mathsf{F}_{\mathsf{ba}}}\right)$ lnt = 0.39Interaction Interaction := if(Int < 1.00, "OK", "NOT OK") = "OK"

SUBJECT: Horizontal 02	JOB NAME: <u>HD500-T Hurricane Impa</u>	act
DATE: <u>4/7/2020</u>	CUSTOMER: Atlas Inc.	
FILENAME: 20-00143 Horizontal 03.xmcd	BY: ATW PAGE:	20



DALLAS	
FORT WORTH	
LOS ANGELES	
SAN FRANCISCO	
LAS VEGAS	
CHICAGO	HEAD ANCHORS
BALTIMORE	
NEW ENGLAND	
HONG KONG	

CDC

ENGINEERING

CDC

<u>Check of Fasteners Attaching Mullion to Horizontal (#12300 Series SS)</u>

Number of Fasteners:		n := 4
Centroid Location:	$\mathbf{x}_{\mathbf{b}} := (3\mathbf{i}\mathbf{n} \cdot 2) \cdot \mathbf{n}^{-1}$	$x_b = 1.5 \cdot in$
	$y_b := (1.375 in \cdot 2) \cdot n^{-1}$	$y_b = 0.688 \cdot in$
Eccentricities:	e ₁ := 1.75in	e ₁ = 1.750 · in
	$e_2 := (1.8125 in - y_b)$	$e_2 = 1.125 \cdot in$
	$c_1 := 3in$	$c_1 = 3 \cdot in$
J-Value:	$J := \left(n \cdot x_b^2\right) + \left(n \cdot y_b^2\right)$	$J = 10.891 \cdot in^2$
Moments:	$M_{h} := e_{2} \cdot \left(0.5 R_{w} \right)$	$M_h = 801.562 \cdot lbf \cdot in$
Vertical Shear on Fasteners:	$V_v := (M_h \cdot x_b) \cdot J^{-1}$	$V_v = 110.4 \cdot lbf$
	$V_{h} := \left(0.5R_{w}\right) \cdot n^{-1} + \left(M_{h} \cdot y_{b}\right) \cdot J^{-1}$	$V_{h} = 228.7 \cdot lbf$
Shear on Fasteners:	$V := \left(V_v^2 + V_h^2\right)^{0.5}$	V = 254 · lbf
Allowable Shear (Ref: AMMA Tabl Interaction:	e 20.9):	$V_a := 411 \cdot lbf$
Interaction:	$Int := V \cdot V_a^{-1}$	lnt = 0.62
Interaction := if(Int \leq 1.00, "OK"	, "NOT OK") = "OK"	

SUBJECT: Anchor	JOB NAME: HD500-T S	System Calculations
DATE: <u>4/21/2020</u>	CUSTOMER: Atlas Inc.	
FILENAME: 20-00143 Head Anchor 02.xmcd	BY: ATW	PAGE:

CDC

Check of Bending Stress on Leg	<u>1 of Horizontal (6063-T6)</u>	
Effective Depth:		d := 15in
Thickness: Bending Eccentricity:	$e_1 := 0.375$ in	t ₁ := 0.125 · in e ₁ = 0.375 · in 3
Section modulus:	$S_{x1} := (t_1^2 \cdot d) \cdot 6^{-1}$	$S_{x1} = 0.039 \cdot in^3$
Moment of Inertia:	$I_{x1} := \left(t_1^2 \cdot d\right) \cdot \left(12\right)^{-1}$	$I_{x1} = 0.02 \cdot in^3$
Bending Moment:	$M_{b1} := \left(0.5R_{w} \cdot \mathbf{e_1} \right)$	$M_{b1} = 267 \cdot lbf \cdot in$
Bending Stress:	$f_{b1} := M_{b1} \cdot (S_{x1})^{-1}$	f _{b1} = 6.8 ⋅ ksi
Allowable Bending Stress:		F _{ba} := 19.7ksi
Interaction:	$I := \max(f_{b1}) \cdot F_{ba}^{-1}$	I = 0.35

Interaction := if($I \le 1.00$, "OK", "NOT OK") = "OK"

SUBJECT: Anchor

DATE: <u>4/21/2020</u>

FILENAME: 20-00143 Head Anchor 02.xmcd

JOB NAME: HD500-T System Calculations

CUSTOMER: Atlas Inc.

BY: ATW

PAGE:

CDC CURTAINWALL DESIGN CONSULTING

ENGINEERING

Check of Fasteners into Steel S	ubstrate (5/16" DRILL FLEX)	
Number of Fasteners:		n := 6
Eccentricities:	e ₁ := 0.5in + 0.5in + tol	e ₁ = 1.250 ⋅ in
	q := min(2.125in, 1.9375in)	c ₁ = 1.938 · in
Tension on Fasteners:	$T := R_{w} \cdot e_{1} \cdot \left(n \cdot 0.85c_{1}\right)^{-1}$	T = 180 · lbf
Shear on Fasteners:	$V := R_{w} \cdot n^{-1}$	V = 237 · lbf
Allowable Tension:		T _a := 2690lbf
Allowable Shear:		V _a := 897lbf
<u>Bending</u> Root Diameter:		d := 0.2443in
Bending Eccentricity:	e _b := 0.5in + tol	$e_b = 0.75 \cdot in$
Allowable Bending Strength:		Y _s := 92ksi
Bending Moment:	$M := 0.5 \cdot V \cdot e_{b}$	$M = 89.1 \cdot lbf \cdot in$
Allowable Bending Moment:	$M_{a} := \left(\frac{1.6}{1.67}\right) Y_{s} \cdot \frac{\left(\boldsymbol{\pi} \cdot d^{3}\right)}{32}$	M _a = 126.2 · lbf · in
Interaction:	$I := \left(T \cdot T_a^{-1} + M \cdot M_a^{-1}\right)^2 + \left(V \cdot V_a^{-1}\right)^2 + \left(V \cdot V^{-1}\right)^2 + \left(\mathsf$	$(-1)^2$ I = 0.667
Interaction := if($I \leq 1.00$, "OK"	, "NOT OK") = "OK"	
	Studs (16 Gauge Studs by Others)	T = 180· lbf
Tension on Fasteners:		
Nominal Diameter:		d := 0.3125 · in
Base Metal Thickness:		t := 0.06 · in
Ultimate Strength:		F _u := 50⋅ksi
Factor of Safety:		FS := 3
Pullout Capacity:	$T_{a2} \coloneqq 0.85 \cdot F_{u} \cdot d \cdot t \cdot FS^{-1}$	T _{a2} = 266⋅ lbf
Interaction:	$I := T \cdot T_{a2}^{-1}$	I = 0.68
Interaction := if($I \le 1.00$, "OK"	, "NOT OK") = "OK"	
SUBJECT: Anchor		JOB NAME: HD500-T System Calculations
DATE: <u>4/21/2020</u>		CUSTOMER: Atlas Inc.
FILENAME: 20-00143 Head Anchor 02.xmcd		BY: ATW PAGE:

CDC CURTAINWALL DESIGN CONSULTING

_ ENGINEERING

<u>Check of Connection to Concrete Substrate (1/2" HILTI KB TZ 304 SS):</u>

LRFD Loads:	$R_{wl} := R_w \cdot 0.6^{-1}$	R _{wl} = 2375 · lbf
Eccentricities:	e ₁ := 0.5in + tol	$e_1 = 0.750 \cdot in$
	$c_1 := \min(2.125 \text{in}, 1.9375 \text{in})$	c ₁ = 1.938 · in
Tension on Fasteners:	$T := R_{wl} \cdot e_1 \cdot \left(0.85 c_1 \right)^{-1}$	$T = 1082 \cdot lbf$
Shear on Fasteners:	$V := R_{wl}$	V = 2375 · lbf

Note: Reference following PROFIS analysis for confirmation of adequacy.

SUBJECT: Anchor

DATE: <u>4/21/2020</u>

FILENAME: 20-00143 Head Anchor 02.xmcd

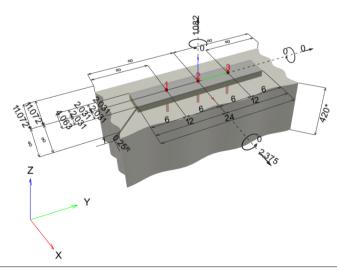
JOB NAME: HD500-T System Calculations

CUSTOMER: Atlas Inc.

BY: ATW

PAGE:

www.hilti.com			
Company:		Page:	1
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design: Fastening point:	Header Anchor	Date:	4/21/2020


Specifier's comments:

1 Input data

Anchor type and diameter:	Kwik Bolt TZ - CS 1/2 (3 1/4)	
Item number:	not available	
Effective embedment depth:	h _{ef,act} = 3.250 in., h _{nom} = 3.625 in.	
Material:	Carbon Steel	
Evaluation Service Report:	ESR-1917	
Issued I Valid:	5/1/2019 5/1/2021	
Proof:	Design Method ACI 318-14 / Mech	
Stand-off installation:	allation: without clamping (anchor); restraint level (anchor plate): 2.00; e _b = 1.000 in.; t = 0.250 in.	
	Hilti Grout: CB-G EG, epoxy, f _{c,Grout} = 14,939 psi	
Anchor plate ^R :	$l_x x l_y x t = 4.063$ in. x 24.000 in. x 0.250 in.; (Recommended plate thickness: not calculated)	
Profile:	Round bars (AISC), 1/16; (L x W x T) = 0.063 in. x 0.063 in.	
Base material:	cracked concrete, 3000, f _c ' = 3,000 psi; h = 420.000 in.	
Installation:	hammer drilled hole, Installation condition: Dry	
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present	
	edge reinforcement: none or < No. 4 bar	

 $^{\rm R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2019 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company: Address:		Page: Specifier:		2
Phone I Fax:		E-Mail:		
Design:	Header Anchor	Date:		4/21/2020
Fastening point:				
1.1 Design result	S			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	N = 1,082; V _x = 2,375; V _y = 0;	no	98
		$M_x = 0; M_y = 0; M_z = 0;$		

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2019 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com			
Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design: Fastening point:	Header Anchor	Date:	4/21/2020

2 Proof I Utilization (Governing Cases)

			Design values [lb]		Utilization		
Loading	Proof		Load Capacit		β _N / β _V [%]	Status	
Tension	Concrete Breakout	Failure	1,082	7,910	14 / -	OK	
Shear	Steel failure (with le	ever arm)	792	816	- / 98	OK	
Loading		β _N	β _v	ζ	Utilization $\beta_{N,V}$ [%]	Status	
Combined tension	and shear loads	0.137	0.970	1.000	93	OK	

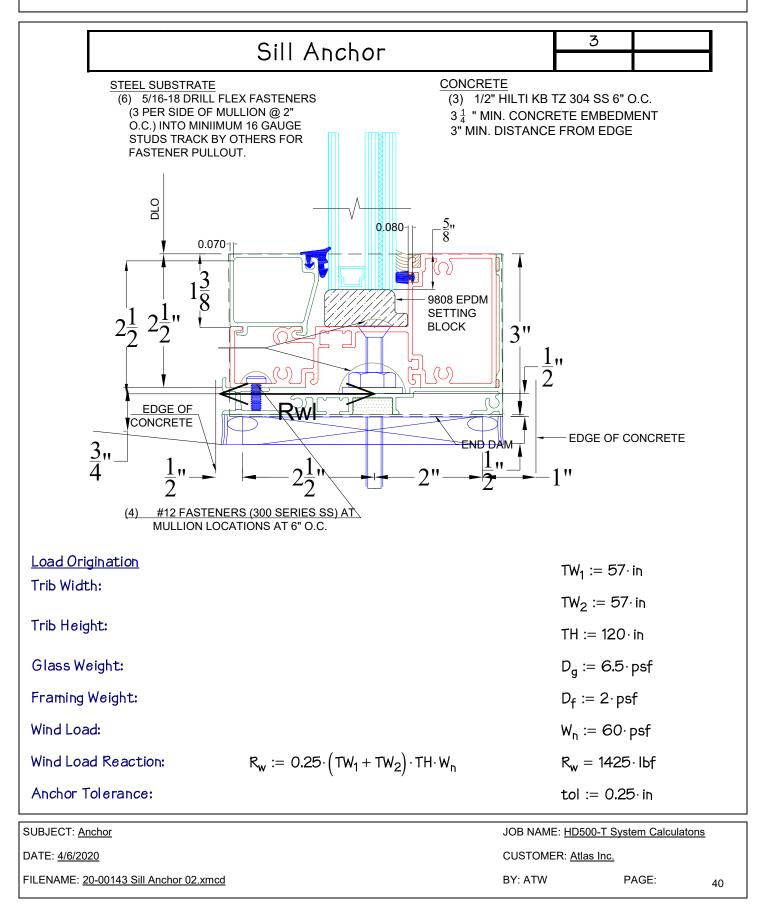
3 Warnings

• Please consider all details and hints/warnings given in the detailed report!

Fastening meets the design criteria!

www.hilti.com			
Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Header Anchor	Date:	4/21/2020
Fastening point:			

4 Remarks; Your Cooperation Duties


- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

DALLAS	
FORT WORTH	
LOS ANGELES	
SAN FRANCISCO	
LAS VEGAS	
CHICAGO	SILL ANCHORS
BALTIMORE	
NEW ENGLAND	
HONG KONG	

CDC

ENGINEERING

_____ ENGINEERING

Check of Fasteners Attaching Fram	ning to Subsill (#12 300 Serie	es SS)
Number of Fasteners:	_1	n := 4
Shear on Fasteners:	$V := R_w \cdot n^{-1}$	V = 356.3 · lbf
Allowable Shear (Ref: AMMA Table		V _a := 411 · lbf
Interaction:	$Int := V \cdot V_a^{-1}$	lnt = 0.87
Interaction := $if(Int \le 1.00, "OK")$, "NOT OK") = "OK"	
<u>Check Bearing Stress of Fastner in</u>	<u>to Aluminum (6061-T6)</u>	
Bolt Diameter:		d := 0.216 · in
Bracket Thickness:		t := 0.5 · in
Max Bearing Stress:	$f_b := R_w \cdot (d \cdot t)^{-1}$	f _b = 13.194 ⋅ ksi
Allowable Bearing Stress:		F _{ba} := 39.0⋅ksi
Interaction:	$I := f_b \cdot F_{ba}^{-1}$	I = 0.338
Interaction := if(I < 1.0 , "OK" , "NO	OT OK") = "OK"	
SUBJECT: Anchor		JOB NAME: <u>HD500-T System Calculatons</u>
DATE: <u>4/6/2020</u>		CUSTOMER: Atlas Inc.
FILENAME: 20-00143 Sill Anchor 02.xmcd		BY: ATW PAGE: 41

Check of Fasteners into Steel Substrate (5/16" DRILL FLEX)

Number of Fasteners:		n := 6
Eccentricities:	$e_1 := 0.5in + 0.5in + tol$ $c_1 := min(2.5in, 2in)$	$e_1 = 1.250 \cdot in$ $c_1 = 2 \cdot in$
Tension on Fasteners:	$T := R_{w} \cdot e_1 \cdot \left(n \cdot \mathbf{0.85c_1}\right)^{-1}$	T = 174.6 · lbf
Shear on Fasteners:	$V := R_{w} \cdot n^{-1}$	V = 237.5 · lbf
Allowable Tension:		T _a := 26901bf
Allowable Shear: <u>Bending</u>		V _a := 897lbf
Root Diameter:		d := 0.313in
Bending Eccentricity:	$e_b := 0.5$ in + tol	$e_b = 0.75 \cdot in$
Allowable Bending Strength:		Y _s := 92ksi
Bending Moment:	$M := 0.5 \cdot V \cdot e_{b}$	$M = 89.1 \cdot lbf \cdot in$
Allowable Bending Moment:	$M_{a} := \left(\frac{1.6}{1.67}\right) Y_{s} \cdot \frac{\left(\boldsymbol{\pi} \cdot d^{3}\right)}{32}$	M _a = 265.4 · lbf · in
Interaction:	$I := \left(T \cdot T_{a}^{-1} + M \cdot M_{a}^{-1}\right)^{2} + \left(V \cdot V_{a}^{-1}\right)^{2}$	l = 0.231
Interaction := if($I \leq 1.00$, "OK"	, "NOT OK") = "OK"	

SUBJECT: Anchor	JOB NAME: HD500-T System Calculatons	
DATE: <u>4/6/2020</u>	CUSTOMER: Atlas Inc.	
FILENAME: 20-00143 Sill Anchor 02.xmcd	BY: ATW PAGE: 42	

CURTAINWALL DESIGN CONSULTING ______ ENGINEERING

CDC

- CONTAINTALE DESIG		
<u>Check Pullout of Fasteners </u>	From Studs (16 Gauge Studs by Others)	
Tension on Fasteners:		T := 88.2lbf
Nominal Diameter:		d := 0.3125 · in
Base Metal Thickness:		t := 0.06 · in
Ultimate Strength:		F _u := 30.8 ⋅ ksi
Factor of Safety:		FS := 3
Pullout Capacity:	$T_{a2} := 0.85 \cdot F_u \cdot d \cdot t \cdot FS^{-1}$	T _{a2} = 164 · lbf
Interaction:	$I := T \cdot T_{a2}^{-1}$	I = 0.54
Interaction := if $(1 \le 1.00, ")$	OK" "NOT OK") = "OK"	
	rete Substrate (1/2" HILTI KB TZ 304 SS):	
LRFD Loads:	$R_{wl} := R_w \cdot 0.6^{-1}$	R _{wl} = 2375 · lbf
Eccentricities:	e ₁ := 0.5in + tol	$e_1 = 0.750 \cdot in$
	$c_1 := \min(2.125 \text{in}, 1.9375 \text{in})$	$c_{\rm H}=1.938\cdot$ in
Tension on Fasteners:	$T := R_{wl} \cdot e_1 \cdot \big(0.85 c_1 \big)^{-1}$	T = 1082 · lbf
Shear on Fasteners:	V := R _{wl}	V = 2375 · lbf

SUBJECT: Anchor	JOB NAME: HD500-T System Calculatons	
DATE: <u>4/6/2020</u>	CUSTOMER: Atlas Inc.	
FILENAME: 20-00143 Sill Anchor 02.xmcd	BY: ATW PAGE: 4	43

DALLAS	
FORT WORTH	
LOS ANGELES	
SAN FRANCISCO	
LAS VEGAS	
CHICAGO	
BALTIMORE	APPENDIX
NEW ENGLAND	
HONG KONG	

8070 Park Lane Suite 400 Dallas, Texas 75231 USA tel. 972/437-4200 fax. 972/437-4562 www.cdc-usa.com

ICC-ES Evaluation Report

Most Widely Accepted and Trusted

ESR-3332

Reissued September 2019

This report is subject to renewal September 2020.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

DIVISION: 05 00 00—METALS Section: 05 05 23—Metal Fastenings

REPORT HOLDER:

ELCO CONSTRUCTION PRODUCTS

EVALUATION SUBJECT:

DRIL-FLEX[®] SELF-DRILLING STRUCTURAL FASTENERS

ADDITIONAL LISTEE:

HILTI, INC. PRODUCT NAME: KWIK-FLEX[®] SELF DRILLING SCREWS

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2015, 2012, 2009 and 2006 *International Building Code*[®] (IBC)
- 2015, 2012 and 2009 International Residential Code[®] (IRC)

Property evaluated:

Structural

2.0 USES

Elco Dril-Flex[®] and Hilti Kwik-Flex[®] Self-Drilling Structural Fasteners are used in engineered connections of cold-formed steel members. The fasteners may be used under the IRC when an engineered design is submitted for review in accordance with IRC Section R301.1.3.

3.0 DESCRIPTION

3.1 General:

Elco Dril-Flex® and Hilti Kwik-Flex® Self-Drilling Structural Fasteners are proprietary, self-drilling tapping screws that have a dual heat treatment and that are coated with a corrosion-preventive coating identified as Silver Stalgard®. The drill point and lead threads of the screws are heattreated to a relatively high hardness to facilitate drilling and thread forming. The balance of the fastener is treated to a lower hardness complying with the hardness limits for SAE J429 Grade 5 screws and the hardness limits for ASTM A449-10 Type 1 screws. The threaded portion of the screw with the lower hardness is considered the loadbearing area, used to transfer loads between connected elements. See Figures 10, 11 and 12. Table 1 provides screw descriptions (size, tpi, length), nominal diameters, head styles, head diameters, point styles, drilling capacities and length of load-bearing area.

A Subsidiary of the International Code Council®

3.1.1 EDX445 (Type 1): The EDX445 screw is a #10, coarse threaded screw with a phillips pan head. See Figure 1.

3.1.2 EAF430, EAF460, EAF470, EAF480 (Type 2): These screws are #10, coarse threaded screws with an indented hex washer head. See Figure 2.

3.1.3 EAF621, EAF641, EAF681, EAF690, EAF715 (Types 3 and 4): These screws are #12, coarse threaded screws with an indented hex washer head. See Figure 3.

3.1.4 EAF755 (Type 5): The EAF755 screw is a #12, fine threaded screw with an indented hex washer head. See Figure 4.

3.1.5 EAF816, EAF841, EAF846 (Type 6): These screws are $\frac{1}{4}$ -inch-diameter, coarse threaded screws with an indented hex washer head. See Figure 5.

3.1.6 EAF865, EAF876, EAF886, EAF890 (Type 7): These screws are ¹/₄-inch-diameter, fine threaded screws with an indented hex washer head. See Figure 6.

3.1.7 EAF888 (Type 8): The EAF888 screw is a ¹/₄-inchdiameter, fine threaded screw with an indented hex washer head. The lead threads have a design identified by the manufacturer as Round Body Taptite[®]. See Figure 7.

3.1.8 EAF900, EAF910 (Types 9 and 10): These screws are $\frac{1}{4}$ -inch-diameter, partially threaded, fine threaded screws with an indented hex washer head.

3.1.9 EAF940 (Type 11): The EAF940 screw is a ${}^{5/}_{16}$ -inch-diameter, fine threaded screw with an indented hex washer head. The lead threads have a design identified by the manufacturer as Round Body Taptite[®]. See Figure 8.

3.1.10 EAF960, EAF970 (Type 12): These screws are ${}^{5}/_{16}$ -inch-diameter, fine threaded screws with an indented hex washer head. At the lead end of the screw, the shank of the screw is notched to form a shank slot. See Figure 9.

3.2 Screw Material:

The screws are formed from alloy steel wire complying with the manufacturer's specifications. The screws are heattreated to a through-hardness of 28 to 34 HRC. The drilling point and lead threads are heat-treated to a minimum of 52 HRC.

3.3 Connected Material:

The connected steel materials must comply with one of the standards listed in Section A2.1.1 of AISI S100-12 (Section A2 of AISI S100-07 for the 2012 and 2009 IBC, AISI-NAS for the 2006 IBC) and must have the minimum thickness, yield strength and tensile strength shown in the tables in this report.

4.0 DESIGN AND INSTALLATION

4.1 Design:

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

Elco Dril-Flex[®] and Hilti Kwik-Flex[®] Self-Drilling Structural Fasteners are recognized for use in engineered connections of cold-formed steel construction. Design of the connections must comply with Section E4 of AISI S100 (AISI-NAS for the 2006 IBC). Nominal and available fastener tension and shear strengths for the screws are shown in Table 2. Available connection shear, pull-over and pull-out capacities are given in Tables 3, 4 and 5, respectively. For tension connections, the lowest of the available fastener tension strength, pull-over strength and pull-out strength, in accordance with Tables 2, 4 and 5, respectively, must be used for design. For shear connections, the lower of the available fastener shear strength and the shear (bearing) strength, in accordance with Tables 2 and 3, respectively, must be used for design. Design provisions for tapping screw connections subjected to combined shear and torsion loading are outside the scope of the report. The connection shear strength is for connections where the connected steel elements are in direct contact with one another.

For screws used in framing connections, in order for the screws to be considered fully effective, the minimum spacing between the fasteners and the minimum edge distance must be three times the nominal diameter of the screws, except when the edge is parallel to the direction of the applied force, the minimum edge distance must be 1.5 times the nominal screw diameter. When the spacing between screws is 2 times the fastener diameter, the connection shear strength values in Table 3 must be reduced by 20 percent (Refer to Section D1.5 of AISI S200).

For screws used in applications other than framing connections, the minimum spacing between fasteners must be three times the nominal screws diameter and the minimum edge and end distance must be 1.5 times the nominal screw diameter. Additionally, under the 2009 and 2006 IBC, when the distance to the end of the connected part is parallel to the line of the applied force, the allowable connection shear strength determined in accordance with Section E4.3.2 of Appendix A of AISI S100-07 (AISI – NAS for the 2006 IBC) must be considered.

Connected members must be checked for rupture in accordance with Section E6 of AISI S100-12 for the 2015 IBC (Section E5 of AISI S100-07/S2-10 for the 2012 IBC; Section E5 of AISI S100-07 for the 2009 IBC).

When tested for corrosion resistance in accordance with ASTM B117, the screws meet the minimum requirement listed in ASTM F1941, as required by ASTM C1513, with no white corrosion after three hours and no red rust after twelve hours.

4.2 Installation:

Installation of Elco Dril-Flex[®] and Hilti Kwik-Flex[®] Self-Drilling Structural Fasteners must be in accordance with the manufacturer's published installation instructions and this report. The manufacturer's published installation instructions must be available at the jobsite at all times during installation.

Screw length and point style must be selected by considering, respectively, the length of load-bearing area and the drilling capacities shown in Table 1. The fasteners must be installed without predrilling holes in the receiving member of the connection. The drilling function of the fastener must be completed prior to the lead threads of the fastener engaging the metal. When the total connection thickness exceeds the maximum drilling capacity shown in Table 1, clearance holes must be provided in the attached material to reduce the thickness to be drilled by the screw. Clearance holes must be $13/_{64}$, $15/_{64}$, $and 21/_{64}$ inch

(5.2, 5.9, 6.7 and 8.3 mm) in diameter for #10, #12, $\frac{1}{4}$ -inch-diameter and $\frac{5}{16}$ -inch-diameter (4.7, 5.3, 6.4 and 7.9 mm) fasteners, respectively. The screw must be installed perpendicular to the work surface using a 1,200 to 2,500 rpm screw gun incorporating a depth-sensitive or torque-limiting nose piece. The screw must penetrate through the supporting metal with a minimum of three threads protruding past the back side of the supporting metal.

5.0 CONDITIONS OF USE

The Elco Dril-Flex[®] and Hilti Kwik-Flex[®] Self-Drilling Structural Fasteners described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** The fasteners must be installed in accordance with the manufacturer's published installation instructions and this report. If there is a conflict between the manufacturer's published installation instructions and this report, the more severe requirements govern.
- **5.2** The allowable connection capacities specified in Section 4.1 are not to be increased when the fasteners are used to resist short-duration loads, such as wind or seismic forces.
- **5.3** The utilization of the nominal connection capacities contained in this evaluation report, for the design of cold-formed steel diaphragms, is outside the scope of this report.
- **5.4** Drawings and calculations verifying compliance with this report and the applicable code must be submitted to the code official for approval. The drawings and calculations are to be prepared by a registered design professional when required by the statutes of the jurisdiction in which the project is to be constructed.
- **5.5** The fasteners are manufactured under a quality-control program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Tapping Screw Fasteners (AC118), dated February 2016.

7.0 IDENTIFICATION

- **7.1** The Elco Dril-Flex[®] and Hilti Kwik-Flex[®] self-drilling tapping screws are marked with a "^(C)" on the top surface of the screw heads, as shown in Figures 1 through 9. Packages of self-drilling tapping screws are labeled with the report holder or listee name (Elco Construction Products or Hilti, Inc.) and address, product brand name (Dril-Flex[®] or Kwik-Flex[®]), product number or item number, size and length, point style and the evaluation report number (ESR-3332).
- **7.2** The report holder's contact information is the following:

ELCO CONSTRUCTION PRODUCTS 1302 KERR DRIVE DECORAH, IOWA 52101 (800) 435-7213 www.elcoconstruction.com infoElco@sbdinc.com

7.3 The Additional Listee's contact information is the following:

HILTI, INC. 7250 DALLAS PARKWAY, SUITE 1000 PLANO, TEXAS 75024 (800) 879-8000 www.us.hilti.com

SCREW TYPE	ELCO PRODUCT	HILTI ITEM NUMBER	NIMBED (nom. size-tpi x	DIAMETER	HEAD STYLE ¹	STYLE ¹ DIAMETER	POINT STYLE	DRILLING CAPACITY (in.)		LENGTH OF LOAD BEARING AREA ²
	NUMBER	R length) (in.) (in.)	(in.)		Min.	Max.	AREA⁻ (in.)			
1	EDX445	03409732	#10-16x ³ / ₄	0.190	PPH	0.365	2	0.11	0.110	0.38
	EAF430	00408123	#10-16x ³ / ₄	0.190	IHWH	0.399	3	0.11	0.150	0.38
2	EAF460	03489672	#10-16x1 ¹ / ₂	0.190	IHWH	0.399	3	0.11	0.150	1.00
2	EAF470	03458234	#10-16x2	0.190	IHWH	0.415	3	0.11	0.150	1.50
	EAF480	03492651	#10-16x2 ¹ / ₂	0.190	IHWH	0.399	3	0.11	0.150	1.83
	EAF621	00087572	#12-14x ⁷ / ₈	0.216	IHWH	0.415	3	0.11	0.187	0.38
3	EAF641	00087646	#12-14x1	0.216	IHWH	0.415	3	0.11	0.187	0.50
3	EAF681	00087647	#12-14x1 ¹ / ₂	0.216	IHWH	0.415	3	0.11	0.187	1.00
	EAF690	00008595	#12-14x2	0.216	IHWH	0.415	3	0.11	0.187	1.50
4	EAF715	03011177	#12-14x3	0.216	IHWH	0.500	2	0.11	0.110	2.35
5	EAF755	03458235	#12-24x1 ³ / ₄	0.216	IHWH	0.415	5	0.11	0.500	0.80
	EAF816	00087648	¹ / ₄ -14x1	0.250	IHWH	0.500	3	0.11	0.210	0.45
6	EAF841	00087649	¹ / ₄ -14x1 ¹ / ₂	0.250	IHWH	0.500	3	0.11	0.210	0.95
	EAF846	00008598	¹ / ₄ -14x2	0.250	IHWH	0.500	3	0.11	0.210	1.45
	EAF865	03011203	¹ / ₄ -20x1 ¹ / ₈	0.250	IHWH	0.500	4	0.11	0.312	0.50
7	EAF876	00000451	¹ / ₄ -20x1 ¹ / ₂	0.250	IHWH	0.500	4	0.11	0.312	0.83
/	EAF886	00000452	¹ / ₄ -20x2	0.250	IHWH	0.500	4	0.11	0.312	1.33
	EAF890	00010436	¹ / ₄ -20x2 ¹ / ₂	0.250	IHWH	0.500	4	0.11	0.312	1.83
8	EAF888	03458236	¹ / ₄ -20x1 ³ / ₄	0.250	IHWH	0.500	5	0.11	0.500	0.80
9	EAF900	03414194	¹ / ₄ -20x3 ³ / ₈	0.250	IHWH	0.500	3	0.11	0.210	2.70
10	EAF910	03463594	¹ / ₄ -20x4	0.250	IHWH	0.500	4	0.11	0.312	3.50
11	EAF940	03011230	⁵ / ₁₆ -18x1 ¹ / ₂	0.313	IHWH	0.600	3	0.11	0.312	0.80
12	EAF960	03006009	⁵ / ₁₆ -24x1 ¹ / ₂	0.313	IHWH	0.600	4	0.11	0.312	0.80
12	EAF970	03432628	⁵ / ₁₆ -24x2	0.313	IHWH	0.600	4	0.11	0.312	1.25

TABLE 1—ELCO DRIL	-FLEX SELF-DRILLING S	TRUCTURAL FASTENERS

For SI: 1 inch = 25.4 mm.

¹Head styles: IHWH = Indented Hex Washer Head; PPH = Phillips Pan Head. ²The Length of Load Bearing Area is based on the length of the threaded portion of the screw that is heat treated to HRC 28-34, and represents the limit of the total thickness of the connected elements. See Sections 3.1 and 4.2 and Figures 10 through 12 for further clarification.

TABLE 2—FASTENER SHEAR AND TENSION STRENGTH, pounds-force ¹	,2,3
--	------

SCREW TYPE	SCREW SIZE		STRENGTH STED)		TRENGTH (ASD) =3		ENGTH (LRFD) =0.5
TIPE	SIZE	Shear, P _{ss}	Tension, P _{ts}	Shear, P _{ss} /Ω	Tension, P_{ts}/Ω	Shear, ΦP _{ss}	Tension, ΦP _{ts}
1	#10-16	1526	2273	509	758	763	1136
2	#10-16	1463	2276	488	759	732	1138
3, 4	#12-14	1992	3216	664	1072	996	1608
5	#12-24	2503	4177	834	1392	1252	2088
6	¹ / ₄ -14	2692	4363	897	1454	1346	2182
7, 9, 10	¹ / ₄ -20	2659	4729	886	1576	1330	2364
8	¹ / ₄ -20	2617	4619	872	1540	1308	2309
11	⁵ / ₁₆ -18	4568	8070	1523	2690	2284	4035
12	⁵ / ₁₆ -24	5471	8757	1824	2919	2736	4379

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N.

¹For tension connections, the lower of the available fastener tension strength, pullover strength, and pull-out strength found in Tables 2, 4

and 5, respectively, must be used for design. ²For shear connections, the lower of the available fastener shear strength and the allowable shear (bearing) capacity found in Tables 2 and 3, respectively, must be used for design. ³Nominal strengths are based on laboratory tests.

SCREW	SCREW	NOMINAL			DESIGN 1	THICKNESS (in	.) ⁶		
TYPE	DESIGNATION	DIAMETER (in.)	0.048-0.048	0.048-0.075	0.060-0.060	0.075-0.075	¹ / ₈ "- ³ / ₁₆ "	³ / ₁₆ "- ¹ / ₄ "	¹ / ₄ "-0.105"
	•		ALLC	WABLE STRE	NGTH (ASD)				
1	#10-16	0.190	289	289	404	-	-	-	-
2	#10-16	0.190	369	395	453	-	-	-	-
3, 4	#12-14	0.216	356	573	513	497	-	-	-
6	¹ / ₄ -14	0.250	377	626	520	661	638	-	-
7, 8	¹ / ₄ -20	0.250	386 ^{7,8}	526 ^{7,8}	533 ⁸	670 ⁸	595 ⁹	624 ⁹	554 ⁹
11	⁵ / ₁₆ -18	0.313	408	622	561	891	-	-	-
12	⁵ / ₁₆ -24	0.313	-	-	-	-	1347	984	887
	•		DE	SIGN STRENG	TH (LRFD)				
1	#10-16	0.190	433	433	605	-	-	-	-
2	#10-16	0.190	590	631	724	-	-	-	-
3, 4	#12-14	0.216	569	917	820	795	-	-	-
6	¹ / ₄ -14	0.250	603	1001	833	1058	1021		
7, 8	¹ / ₄ -20	0.250	617 ^{7,8}	842 ^{7,8}	852 ⁸	1072 ⁸	952 ⁹	999 ⁹	886 ⁹
11	⁵ / ₁₆ -18	0.313	653	996	897	1425	-	-	-
12	⁵ / ₁₆ -24	0.313	-	-	-	-	2155	1575	1419

TABLE 3—SHEAR (BEARING) CAPACITY OF SCREW CONNECTIONS, pounds-force^{1,2,3,4,5}

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 ksi = 6.89 Mpa.

¹Available strengths are based on laboratory tests, with safety factors/resistance factors calculated in accordance with AISI S100.

²For shear connections, the lower of the available fastener shear strength and the available shear (bearing) capacity must be used for design.

³Values are based on steel members with a minimum yield strength of $F_y = 33$ ksi and a minimum tensile strength of $F_u = 45$ ksi. ⁴Available capacity for other member thickness may be determined by interpolating within the table.

⁵Unless otherwise noted, when both steel sheets have a minimum specified tensile strength $F_u \ge 58$ ksi, multiply tabulated values by 1.29 and when both steel Sheets have a minimum tensile strength $F_u \ge 65$ ksi steel, multiply tabulated values by 1.44. ⁶The first number is the thickness of the steel sheet in in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in

contact with the screw head (bottom sheet).

When both steel sheets have a minimum specified tensile strength of $F_{\mu} \ge 55$ ksi (e.g. ASTM A653 SS Grade 40), multiply tabulated values by 1.22.

⁹When both steel sheets have a minimum specified tensile strength of $F_{ij} \ge 52$ ksi (e.g. ASTM A653 SS Grade 37), multiply tabulated values by 1.15.

SCREW	SCREW	NOMINAL	MINIMUM EFFECTIVE	DESIG		IESS OF I	MEMBER (ir		ACT WIT	H SCREW	HEAD
TYPE	DESIGNATION	DIAMETER (in.)	PULL-OVER DIAMETER (in.)	0.048	0.060	0.075	0.105	¹ /8"	³ / ₁₆ "	¹ / ₄ "	⁵ / ₁₆ "
			ALLOWA	BLE STR	ENGTH (ASD)					
1	#10-16	0.190	0.357	386	481 ²	481 ²	481 ²	481 ²	-	-	-
2	#10-16	0.190	0.384	415	481 ²	481 ²	481 ²	481 ²	-	-	-
3, 4	#12-14	0.216	0.398	430	537	672	734 ²	734 ²	734 ²	-	-
5	#12-24	0.216	0.398	430	537	672	734 ²	734 ²	734 ²	734 ²	734 ²
6	¹ / ₄ -14	0.250	0.480	518	648	810	1126 ²	1126 ²	1126 ²	-	-
7, 8	¹ / ₄ -20	0.250	0.480	-	648	810	1126 ²	1126 ²	1126 ²	1126 ²	1126 ²
11	⁵ / ₁₆ -18	0.313	n/a ²	-	-	-	1169 ²	1169 ²	-	-	-
12	⁵ / ₁₆ -24	0.313	n/a²	-	-	-	1326 ²	1326 ²	1326 ²	1326 ²	1326 ²
			DESIGI	N STREN	GTH (LRF	D)					
1	#10-16	0.190	0.357	578	723	781 ²	781 ²	781 ²	-	-	-
2	#10-16	0.190	0.384	622	778	781 ²	781 ²	781 ²	-	-	-
3, 4	#12-14	0.216	0.398	645	806	1007	1192 ²	1192 ²	1192 ²	-	-
5	#12-24	0.216	0.398	645	806	1007	1192 ²	1192 ²	1192 ²	1192 ²	1192 ²
6	¹ / ₄ -14	0.250	0.480	778	972	1215	1701	1830 ²	1830 ²	-	-
7, 8	¹ / ₄ -20	0.250	0.480	-	972	1215	1701	1830 ²	1830 ²	1830 ²	1830 ²
11	⁵ / ₁₆ -18	0.313	n/a ²	-	-	-	1871 ²	1871 ²	-	-	-
12	⁵ / ₁₆ -24	0.313	n/a²	-	-	-	2121 ²	2121 ²	2121 ²	2121 ²	2121 ²

TABLE 4—TENSILE PULL-OVER CAPACITY OF SCREW CONNECTIONS, pounds-force^{1,3,4,5,6}

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 ksi = 6.89 Mpa.

¹Available strengths are based on calculations in accordance with AISI S100, unless otherwise noted.

²Available strengths are based on laboratory tests, with safety factors/resistance factors calculated in accordance with AISI S100, or on the shear strength of the integral washer. Increasing values for higher steel tensile strength per Note 6 is not allowed.

³For tension connections, the lowest of the available pull-out, pull-over, and fastener tension strength must be used for design.

 4 Values are based on steel members with a minimum yield strength of F_y = 33 ksi and a minimum tensile strength of F_u = 45 ksi.

⁵Available capacity for other member thickness may be determined by interpolating within the table.

⁶For steel with a minimum tensile strength F_u ≥ 58 ksi, multiply tabulated values by 1.29 and for steel with a minimum tensile strength F_u ≥ 65 ksi steel, multiply tabulated values by 1.44.

SCREW	SCREW	NOMINAL	DESIGN	THICKNE	SS OF MEN	MBER NOT		ACT WITH S	SCREW HE	AD (in.)
TYPE	DESIGNATION	DIAMETER (in.)	0.048	0.060	0.075	0.105	¹ / ₈ "	³ / ₁₆ "	¹ / ₄ "	⁵ / ₁₆ "
			ALLOWA	BLE STRE	NGTH (ASI	D)				
1	#10-16	0.190	136	193	236	307	297	-	-	-
2	#10-16	0.190	136	193	236	307	297	-	-	-
3, 4	#12-14	0.216	132	205	264	328	510	665	-	-
6	¹ / ₄ -14	0.250	131	207	255	342	561	899	-	-
7, 8, 9, 10	¹ / ₄ -20	0.250	-	204 ⁶	260 ⁶	423 ⁶	524 ⁷	914 ⁷	1044	1206
11	⁵ / ₁₆ -18	0.313	-	-	-	520	707	-	-	-
12	⁵ / ₁₆ -24	0.313	-	-	-	459	637	724	1189	1424
			DESIG	N STRENG	TH (LRFD)					
1	#10-16	0.190	217	309	378	492	476	-	-	-
2	#10-16	0.190	217	309	378	492	476	-	-	-
3, 4	#12-14	0.216	211	328	423	525	816	1064	-	-
6	¹ / ₄ -14	0.250	210	331	409	548	897	1439	-	-
7, 8, 9, 10	¹ / ₄ -20	0.250	-	326 ⁶	416 ⁶	677 ⁶	838 ⁷	1462 ⁷	1670	1930
11	⁵ / ₁₆ -18	0.313	-	-	-	832	1131	-	-	-
12	⁵ / ₁₆ -24	0.313	-	-	-	735	1019	1159	1903	2279

TABLE 5—TENSILE PULL-OUT CAPACITY OF SCREW CONNECTIONS, pounds-force^{1,2,3,4,5}

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 ksi = 6.89 Mpa.

¹Available strengths are based on laboratory tests, with safety factors/resistance factors calculated in accordance with AISI S100.

²For tension connections, the lowest of the available pull-out, pull-over, and fastener tension strength must be used for design.

³Values are based on steel members with a minimum yield strength of F_{γ} = 33 ksi and a minimum tensile strength of F_{μ} = 45 ksi.

⁴Available capacity for other member thickness may be determined by interpolating within the table.

⁵Unless otherwise noted, for steel with a minimum tensile strength $F_u \ge 58$ ksi, multiply tabulated values by 1.29 and for steel with a minimum tensile strength $F_u \ge 65$ ksi steel, multiply tabulated values by 1.44.

⁶When both steel sheets have a minimum specified tensile strength of $F_u \ge 52$ ksi (e.g. ASTM A653 SS Grade 37), multiply tabulated values by 1.15. ⁷When both steel sheets have a minimum specified tensile strength of $F_u \ge 58$ ksi (e.g. ASTM A36), multiply tabulated values by 1.29.

FIGURE 1-#10-16 PHILLIPS PAN HEAD (TYPE 1 SCREW)

FIGURE 2—#10-16 INDENTED HEX WASHER HEAD (TYPE 2 SCREW)

FIGURE 3—#12-14 INDENTED HEX WASHER HEAD (TYPE 3 AND 4 SCREW)

FIGURE 4—#12-24 INDENTED HEX WASHER HEAD (TYPE 5 SCREW)

FIGURE 5—¹/₄-14 INDENTED HEX WASHER HEAD (TYPE 6 SCREW)

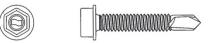
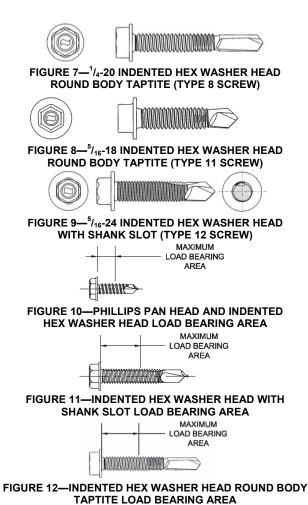



FIGURE 6—¹/₄-20 INDENTED HEX WASHER HEAD TYPE 7 SCREW

ICC-ES Evaluation Report

Most Widely Accepted and Trusted

ESR-3332 FBC Supplement

Reissued September 2019 This report is subject to renewal September 2020.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 05 00 00—METALS Section: 05 05 23—Metal Fastenings

REPORT HOLDER:

ELCO CONSTRUCTION PRODUCTS

EVALUATION SUBJECT:

DRIL-FLEX® SELF-DRILLING STRUCTURAL FASTENERS

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the fasteners, recognized in ICC-ES master evaluation report ESR-3332, have also been evaluated for compliance with the codes noted below.

Applicable code editions:

- 2014 Florida Building Code—Building (FBC-B)
- 2014 Florida Building Code—Residential (FBC-R)

2.0 CONCLUSIONS

The fasteners, described in Sections 2.0 through 7.0 of the master evaluation report, ESR-3332, comply with the *Florida Building Code*—*Building Code*—*Building Code*—*Building Code*—*Residential* when designed and installed in accordance with the *International Building Code* (IBC) provisions noted in the master evaluation report, and the following conditions apply:

- Design wind loads must be based on Section 1609 of the *Florida Building Code—Building* or Section 301.2.1.1 of the *Florida Building Code—Residential*, as applicable.
- Load combinations must be in accordance with Section 1605.2 or Section 1605.3 of the *Florida Building Code—Building*, as applicable.

Use of the fasteners have also been found to be in compliance with the High-Velocity Hurricane Zone provisions on the *Florida Building Code—Building Code—Building Code—Residential* under the condition that the design wind loads must be based on Section 1620 of the *Florida Building Code—Building*, as applicable.

For products falling under Florida Rule 9N-3, verification that the report holder's quality-assurance program is audited by a quality-assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official, when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the master report, reissued September 2019.

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

TABLE 20.3: Fastener Capacity

									2	Minimum M	Minimum Material Thickness (Ibs)	(lps) (lps)			
Nominal	۵		A(R)							to Equal	to Equal Tensile Capacity of	pacity of	Maximum	Maximum Tensile Load (lbs) for	d (lbs) for
Fastener	Nominal	A(S)	Thread	_	Allow at	Allow able Shear	Allow	Allow able Bearing (lbs)	(lbs)		Fastener (in)		Available	Available 3/8" Plate Thickness	Thickness
Diameter	Thread	Tensile	Root	Allow able			1/8"	1/8"	1/8"				3/8"	3/8"	
& Threads	Diameter	Stress Area	Area	Tension	Single	Double	Steel	Aluminum	Aluminum			100	Steel	Aluminum	-
per Inch	(II)	(in2)	(in2)	(lbs)	(sql)	(lbs)	A36	6063-75	6063-T6	A36	6063-T5	6063-T6	A36	6063-T5	6063-T6
#6-32	0.1380	0,0091	0.0078	363	180	360	906	253	345	0.1602	0.3048	0.2268	363	363	-363
#8-32	0.1640	0.0140	0.0124	560	286	573	1,070	301	410	0.2079	> 3/8"	0.2953	560	522	560
#10-24	0.1900	0.0175	0.0151	701	350	700	1,240	348	475	0.2246	> 3/8"	0.3001	701	643	701
#12-24	0.2160	0.0242	0.0214	967	493	986	1,409	396	540	0.2594	> 3/8"	0.3619	967	734	2967
1/4-20	0.2500	0.0318	0.0280	1,273	646	1,291	1,631	458	625	0.2745	> 3/8"	> 3/8"	1,273	865	1,179
5/16-18	0.3125	0.0524	0.0469	2,517	1,299	2,599	2,039	573	781	0.3144	> 3/8"	> 3/8"	2,517	1,303	1,776
3/8-16	0.3750	0.0775	0.0699	3,719	1,937	3,874	2,447	688	938	0.3518	> 3/8"	> 3/8"	3,719	1,572	2,144
7/16-14	0.4375	0.1083	0.0961	5,103	2,664	5,328	2,855	802	1,094	> 3/8"	> 3/8"	> 3/8"	4,937	1,873	2,654
1/2-13	0.5000	0.1419	0.1292	6,811	3,581	7,162	3,263	917	1,250	> 3/8"	> 3/8"	> 3/8"	5,642	2,140	2,918
9/16-12	0.5625	0.1819	0.1664	8,733	4,611	9,222	3,670	1,031	1,406	> 3/8"	> 3/8"	> 3/8"	6,444	2,444	3,333
5/8-11	0.6250	0.2260	0.2071	10,848	5,738	11,477	4,078	1,146	. 1,563	> 3/8"	> 3/8"	> 3/8"	7,148	2,711	3,697
3/4-10	0.7500	0.3345	0.3091	<16,054	8,565	17,130	4,894	1,375	1,875	> 3/8"	> 3/8"	> 3/8"	8,612	3,266	4,454
7/8-9	0.8750	0.4617	0.4285	22,163	11,876	23,753	5,709	1,604	2,188.	> 3/8"	> 3/8"	> 3/8"	10,158	3,853	6,254
1-8	1.0000	0.6057	0.5630	29,076	15,601	31,203	6,525	1,833	2,500	> 3/8"	> 3/8"	> 3/8"	11,696	4,437	6,050
						OAE GER	19910 0 80	SAE Grade o Steel (Spaced Infeads)	sads/						
										Minimum M	Minimum Material Thickness (lbs)	(ness (lbs)			
Nominal	۵		A(R)							to Equal	to Equal Tensile Capacity of	pacity of	Maximum	Maximum Tensile Load (lbs) for	d (lbs) for
Fastener	Nominal	×	Thread		Allowat	Allow able Shear	Allow	Allow able Bearing (lbs)	(lbs)		Fastener (in)	_	Available	Available 3/8" Plate Thickness	Thickness
Diameter	Thread	Basic Minor	Root	Allow able			1/8"						3/8"	3/8"	
& Threads	Diameter	Diameter	Area	Tenslon	Single	Double	Steel	-	Aluminum				Steel	Aluminum	
per Inch	(ii)	(ii)	(in2)	(lbs)	(Ibs)	(lbs)	A36	6063-T5	6063-T6	A36	6063-T5	6063-T6	A36	6063-T5	6063-T6
#6-20	0.1380	0660'0	0,0077	308	178	356	800	253	345	0.1358	0.1907	0.1543	308	308	308
#8-18	0.1640	0.1160	0.0106	423	244	488	1,070	301	410	0.1569	0.2175	0.1758	423	423	423
91-01#	0.1900	0651.0	0.0143	5/3	59	661	1,240	. 48	4/4	0.1834	1162.0	92020	5/9	5/3	20
#1-71#	0.2160	0,15/0	0.0184	1/4	44/	894	1,409	9AD	040	2912.0	02220	0.2380	104	114	114
+1-+11	20102.0	0.0000	2070'D	C/0'1	170	7,242	1001	400	192	11070	Inter-	DRDZ'D	0101	1,0/0	0/01
21-01/0	0.3750	00000	0.070.0	2,100	2121	02412	- 200'Z	0/0	10/	1040.0	10/0 ~ .	10/6/0	001,2	100'1	2,100
21-0/0	ne ie n	0.2330	70/00	0/0'0	046'1	260'0	2,441	000	800	010	0/0	010 1	2113	2,011	1012
			SAE Grade 5 (s 9/16"	5 (<u>\$ 9/16"</u>)	ASTMA4	ASTM A449 (2 5/8")	P	For All Diameters	srs	Effective	Effective Area (UNC Threads)	Threads)	Effective	Effective Area (Spaced Threads)	Threads)
U (Min. UIII	FU (Min. Ultimate Tensile Strength)	e Strength)	120	20,000 psl		20,000 psl		$F_T = F_U/SF$		A(R) =	A(R) = π (D-1.2269/N) ² / 4	19/N) ² / 4		$A(R) = \pi K^3/4$	4
t (Allow. Te	FT (Allow. Tensile Stress, Ds1/4")	a, Ds1/4")	40	40,000 ps]1		NA	Allow ab	Allow able Tension = $F_T[A(S)]$	F _T [A(S)]	A(S) =	A(S) = π (D-0.9743/N) ² / 4	13/N) ² / 4		$A(S) = \pi K^2/4$	4
T. (Allow. Ts	FT (Allow. Tenslie Stress, D≻ 1/4")	a, D> 1/4")	48	48,000 psi		48,000 psi	Fv = Fi	F _v = Fu / (SF x sq rt (3))	rt (3))						
FV (Allowable Shear Slrass; D51/4"	e Shear Sin	888) D<1/4")	23	23.094 osl		NVA	Allowedia	Allowable Chale Chear -E. IA (D)	L' LAUDA						
the second		A DESCRIPTION OF A DESC	the state of the second	A THE REAL PROPERTY OF A THE PARTY O		A Constitution of the second	DIDBADIC F	India o pitino					1		

NOTE 5:

Values are taken from AISC, ASTM, IFI, SAE and AA documents. K values for spaced threads are taken as the minimum values in IFI Fastener Handbook, 6th Ed.
 Safety Factor used for fasteners with diameters 1/4" or less is 3.0, Safety Factor used for fasteners with diameters 5/16" or greater is 2.5.
 Fasteners with diameters of 5/8" or greater are fabricated from carbon steel complying with ASTM 4449 Type

Pape 44

A MA TTP A9-14

TABLE 20.9: Fastener Capacity

1/8" 1/8" 1/8" 1/8" 1/8" 1/8" 1/8" 1/8"	Man and and and and and and and and and a					A(R)
Aluminum 6063-T5 253 301 348			Allow able Shear Allow ab		Allow able Shear ·	Allow able Shear ·
900 0 0		-	Steel	Single Double Steel	Tension Single Double Steel	ea Area Tension Single Double Steel
200			(lbs) A36	(lbs) (lbs) A36	(lbs) (lbs) A36	(in2) (ibs) (ibs) A36
6 6	006		300	150 300	303 150 300	0.0078 303 150 300
¢.5	1,070		477	239 477	467 239 477	0.0124 467 239 477
1	1,240		583	292 583 1	584 292 583 1	0.0151 584 292 583 1
396	1,409	822 1,409 1 078 1 631		822 1 078	411 822 1 538 1 078	805 411 822 1 1 051 538 1 078 1
573	2.039		2.166	1.083 2.166	2.097 1.083 2.166	0.0469 2.097 1.083 2.166
688	2,447		3,228	1,614 3,228	3,100 1,614 3,228	0.0699 3,100 1,614 3,228
802	2,855		4,440	2,220 4,440	2,220 4,440	4,252 2,220 4,440
917	3,263		5,968	2,984 5,968	5,676 > 2,984 5,968	0.1292 5,676 2,984 5,968
1,031	3,670		7,685	3,842 7,685	7,278 3,842 7,685	0.1664 7,278 3,842 7,685
1,146	4,078	+	9,564	4,782 9,564	9,040 4,782 9,564	0.2071 9,040 4,782 9,564
1,375	4,894		12,045	6,022 12,045	11,372 6,022 12,045	0.3091 11,372 6,022 12,045
1,604	5,709		16,701	8,351 16,701	15,583 8,351 16,701	0.4285 15,583 8,351 16,701
1,833	6,525	21,940 6,525		21,940	10,970 21,940	20,444 10,970 21,940
e	ups 11 2 and	- Alloy Groups 1, 2 and	ESS STEEL - Alloy Groups (1,2) and	STAINLESS STEEL - Alloy Groups (1, 2 and 3, Condition GW (Spaced Threads)	STAINLESS STEEL- Alloy Groups (1/2) and	STANLESS STEEL - Alloy Groups (1,2 and
	¥)	_	_	_		
ele	Allow able Bearing (lbs)		Allow able Shear Allow at	Allow able Shear	d Allow able Shear	Allow able Shear
1/8"	1/8"	_		0	Allow able	or Root Allow able
Aluminum ROG3_T5	Steel		Steel	Double Steel	Single Double Steel	Tension Single Double Steel
253	006		296	148 296	7 257 148 296	0 0.0077 257 148 296
301	1,070		-	203 407	203 407	352 203 407
348	1,240	-	551	275 551 1	477 275 551 1	0.0143 477 275 551 1
396	1,409		745	373 745	645 373 745 1	0.0194 645 373 745 1
458	1,631		1,035	517 1,035	896 517 1,035	0.0269 896 517 1,035
573 688	2,039	2,020 2,039 3,243 2,447		2,020	1,010 2,020	1,750 1,010 2,020 2.809 1.622 3.243
	-					the state of the s
ame	For Diameters < 3/4"			2.3/4" Da	2.3/4" Da	s 5/8" Dia; 2 3/4" Dia;
$F_T = F_U/SF$	ш		psi	85,000 ps1	85,000 ps1	h) 75 100 000 ps] 85 000 ps]
Ten	Allow able Tension = $F_T[A(S)]$	pal -		NA pal	pal -	NA pal
1(5	$F_V = F_U / (SF \times sq rt (3))$	F,	Ъ,	33,750 psi – F _V	F,	33,750 psi – F _V
Single	Allowable Single Shear =Fv[A(R)]	64	NA ps/ Allowable	NA psi	64	NA psi
		38 psi	19,468 psi		19.488 psi	

ŗ٦

NOTE II:

Values are taken from AISC, ASTM, IFI, SAE and AA documents. K values for spaced threads are taken as the minimum values in IFI Fastener Handbook, 6th Ed. 2. Safety Factor used for fasteners with diameters 1/4" or less is 3.0, Safety Factor used for fasteners with diameters 5/16" or greater is 2.5.
 Fasteners with diameters of 3/4" and greater are fabricated from different material than fasteners less than 3/4" in diameter.
 Fasteners with diameters of 3/4" and greater are fabricated from different material than fasteners less than 3/4" in diameter.
 For diameters of 3/4" and greater, Fy=45,00 psi. For these, tensile and shear yields govern the allowable tension and shear values (i.e., 0.75 Fy<Fx/SF

Page 50

ay 19.2

an & C

-urtain -

ers Asc. (AAMA: Soumer crease created

Aural Mé.

AMA TIT A9-1

52

						6063-T6					~	
Nominal	۔ ۵	TSA(I) Internal				Alur	ninum Thi	Aluminum Thickness (Inches)	hes)			
Thread Diameter	Thread		0.060	0.072	0.080	0.094	0.125	0.156	0.188	0.250	0.312	0.375
& Inread Per Inch	Ulameter (Inch)	Area Sq. In./Thread				Alle	owable Pu	Allowable Pullout (Pounds)	(spu			
#8-32	0.1640	0.01.0270	83	100	132	155	206	273	341	474	592	712
#10-24	0.1900	0.016864	96	116	153	180	239	324	413	584	729	876
#12-24	0.2160	0.019273	110	132	174	204	271	370	471	668	833	1001
1/4-20	0.2500	0.027234	127	152	201	236	314	431	552	786	981	1179
5/16-18	0.3125	0.037983	1	1	T	354	(471)	648	831	1184	1478	1776
3/8-16	0.3750	0.051581	1	1	1	1	565	780	1001	1429	1784	2144
7/16-14	0.4375	0.070205	1	1	I	i	1	918	1185	1702	2125	2554
1/2-13	0.5000	0.086405	1	1	1	1	1	1049	1354	1946	2428	2918
			6063-T6									
F _u (Tensile	e Ultimate	F _u (Tensile Ultimate Strength)	30000	psi				S)	Shading indicates transition region.	cates trans	ition regic	ć
F _Y (Tensile	F _Y (Tensile Yield Strength)	ength)	25000	psi				o wad town one faith and the address				

For pure role sizes refer to marks 21.1 to 21.1 Fastener pullout not shown for aluminum thickness less than approximately 2 threads, unless tested at a lesser thickness. Multiple fastener connections and embrittlement need to be checked separately. i m 4

Page 74

19 2⁴

Inc. o

D. & C.

turtain 1-

and Yar

chased

cumen

AMMA.

Jrs Ass

ural Mat

A.M.A. TTD. A9-1 4